<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar Spring Semester 2018</td>
<td>1</td>
</tr>
<tr>
<td>Final Study Day and Exam Schedule</td>
<td>2</td>
</tr>
<tr>
<td>Registration Procedure</td>
<td>3</td>
</tr>
<tr>
<td>Toll-Free Numbers</td>
<td>3</td>
</tr>
<tr>
<td>Application for Admission</td>
<td>3</td>
</tr>
<tr>
<td>Total Withdrawal from the University</td>
<td>4</td>
</tr>
<tr>
<td>Grades</td>
<td>4</td>
</tr>
<tr>
<td>Graduate Student Change of Registration after the Deadline</td>
<td>4</td>
</tr>
<tr>
<td>Full-Time Students</td>
<td>4</td>
</tr>
<tr>
<td>Removal of “Incomplete” Grade</td>
<td>5</td>
</tr>
<tr>
<td>Repeating a Course</td>
<td>5</td>
</tr>
<tr>
<td>Admission to Candidacy (MS and PhD)</td>
<td>5</td>
</tr>
<tr>
<td>Continuous Enrollment</td>
<td>5</td>
</tr>
<tr>
<td>Consequences of Non-Enrollment without Leave of Absence</td>
<td>6</td>
</tr>
<tr>
<td>Final Exam for Non-Thesis/Thesis/Dissertation</td>
<td>6</td>
</tr>
<tr>
<td>UT Policy on Insurance for International Students</td>
<td>6</td>
</tr>
<tr>
<td>General Seminar</td>
<td>6</td>
</tr>
<tr>
<td>Final Exam Dates</td>
<td>6</td>
</tr>
<tr>
<td>Financial Calendar, Fees, Refunds and Tuition</td>
<td>7</td>
</tr>
<tr>
<td>Honor Statement</td>
<td>7</td>
</tr>
<tr>
<td>The University of Tennessee Policy on a Drug-Free Campus and Workplace</td>
<td>7</td>
</tr>
<tr>
<td>Spring Semester 2018 Course Listings & Descriptions</td>
<td>9</td>
</tr>
</tbody>
</table>
CALENDAR - 2018 SPRING SEMESTER

Priority Registration... October 16, 2017 – January 9, 2018
Admission to Candidacy Forms for Spring 2018 Commencement December 5, 2017
Spring 2018 Graduation Application Deadline (submit online) December 5, 2017
Graduation Fee Payment Deadline (MS $30, PhD $75) December 5, 2017
Priority registration payment deadline 4:30 p.m. EST January 8, 2018
Late Registration and late fees begin ($100 Late Fee) January 10, 2018
Classes begin... January 10, 2018
Martin Luther King Holiday.. January 15, 2018
Last Day to final register, add, change grading options or drop without a “W”... January 19, 2018
Late Registration and late fees after 14th day ($200) January 24, 2018
Preliminary Thesis/Dissertation Review Deadline February 23, 2018
Spring Break (No Classes) .. March 12 - 16, 2018
Last day to schedule final exam (non-thesis/thesis/dissertation)March 29, 2018
Spring Recess (No Classes) .. March 30, 2018
Drop with a “W” ... April 3, 2018
Last day to take final exam (non-thesis/thesis/dissertation) April 6, 2018
Thesis/Dissertation Deadline 5:00 p.m. EST......................................April 20, 2018
Submit report of final examination (Pass/Fail) form April 20, 2018
All "INCOMPLETE" must be removed for Graduation.......................... April 27, 2018
Deadline for Submission of Admission to Candidacy for students
 Graduating Summer 2018 and Graduation Application April 27, 2018
Classes End... April 27, 2018
Total Withdraw from the University Deadline April 27, 2018
Study Period... April 30, 2018
Exam Period.. May 1, 2, & 3, 2018
Graduate Hooding Ceremony (UTK) .. May 10, 2018
COMMENCEMENT (UTK).. May 10 - 12, 2018
Official Graduation Date... May 12, 2018

Second thesis/dissertation deadlines
 Defense Completed by April 27, 2018
 Second Deadline Application Submitted by April 27, 2018
 http://gradschool.utk.edu/forms/Second%20Deadline%20Graduation%20Application.pdf
 Thesis/Dissertation Submission Deadline by May 18, 2018
 (Student will receive diploma summer 2018 semester, but will not be required to register for
 thesis/dissertation credits)

SUMMER SEMESTER 2018

Priority Registration... TBD
Final Registration .. TBD
Memorial Day Holiday .. May 28, 2018
Classes begin.. May 31, 2018
July 4th Holiday .. July 4, 2018
Classes End.. August 10, 2018
Summer Graduation Date on Transcript (No Ceremony) August 11, 2018

Dates may be revised without notice. Please refer to the following sites for updates:
http://gradschool.utk.edu/ddategraduation.shtml
http://registrar.tennessee.edu/academic_calendar/index.shtml
SPRING SEMESTER 2018
FINAL STUDY DAY AND EXAM SCHEDULE

LAST DAY OF CLASSES... April 27, 2018

STUDY PERIOD .. April 30, 2018

FINAL EXAMS

<table>
<thead>
<tr>
<th>REGULAR CLASS TIME</th>
<th>(Same Classroom)</th>
<th>EXAM TIME</th>
</tr>
</thead>
</table>

1st Day – Tuesday, May 1, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Class</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45 - 9:00</td>
<td>M/Th</td>
<td>7:45 - 9:45</td>
</tr>
<tr>
<td>10:45 - 12:00</td>
<td>M/Th</td>
<td>10:15 - 12:15</td>
</tr>
<tr>
<td>9:15 - 10:30</td>
<td>M/Th</td>
<td>1:00 - 3:00</td>
</tr>
<tr>
<td>2:30 - 3:45</td>
<td>M/Th</td>
<td>3:30 - 5:30</td>
</tr>
</tbody>
</table>

2nd Day – Wednesday May 2, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Class</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:15 - 10:30</td>
<td>Tu/Fri</td>
<td>7:45 - 9:45</td>
</tr>
<tr>
<td>10:45 - 12:00</td>
<td>Tu/Fri</td>
<td>10:15 - 12:15</td>
</tr>
<tr>
<td>1:00 - 2:15</td>
<td>Tu/Fri</td>
<td>1:00 - 3:00</td>
</tr>
<tr>
<td>2:30 - 3:45</td>
<td>Tu/Fri</td>
<td>3:30 - 5:30</td>
</tr>
</tbody>
</table>

3rd Day – Thursday May 3, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Class</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45 - 9:00</td>
<td>Tu/Fri</td>
<td>7:45 - 9:45</td>
</tr>
<tr>
<td>1:00 - 2:15</td>
<td>M/Th</td>
<td>10:15 - 12:15</td>
</tr>
</tbody>
</table>

**** ATTENTION ****

ALL STUDENTS TAKING VIDEOTAPE COURSES
CONTACT INSTRUCTOR FOR DATE AND TIME OF FINAL EXAM

NO CLASSES WILL BE IN SESSION
AT THIS TIME

Graduation and Graduate Hooding Ceremony dates to be announced go to:
http://gradschool.utk.edu/graduation/graduate-hooding-ceremony/
REGISTRATION ANNOUNCEMENT
SPRING SEMESTER 2018

REGISTRATION PROCEDURE

GRADUATE ACADEMIC ADVISING

Graduate students should contact your departmental faculty to arrange an advising appointment. If you’re not accepted into a specific program, the assistant to the dean of graduate studies or the designee may act as your advisor. When the web registration system asks if you’ve discussed your program with your advisor, you must answer yes to continue with the registration process.

REGISTRATION

Students will register at http://my.utk.edu. You will need to log in using your NetID and your NetID password. If you do not know your NetID and NetID password, go to http://onestop.utk.edu/your-classes/registering-for-classes/.

*Log in to MyUTK. You can find a link by looking under “M” on the A-Z index (http://www.utk.edu/alpha/) or by typing myutk.utk.edu directly into your browser. You will need to log in by typing utk/your NetID in the “username” field and then your NetID password in the “password” field.

*Before you attempt to register, clear and pay any financial holds (parking tickets, library fines, fees, etc.).

*Look under the “For Your Review” heading on the MyUTK portal page (located in the upper right-hand corner) for notification of any holds you may have.

*Once you are logged into “My UTK,” scroll down to “UTK Student Registration Links.” Click on “Search for Classes” to look up sections and then register.

*Print a copy of your schedule when you are finished registering.

If you have any questions, call the Office of the University Registrar at 865-974-2101 or contact Charlene Hane in Student Services room D-100, phone 931-393-7228, email chane@utsi.edu.

TOLL-FREE NUMBERS

For a specific office:1-888-822-UTSI (8874) and the extension number. For general information: ..1-888-822-UTSI (8874)
Admissions Office: ..1-888-822-UTSI (8874)-37234
Budget and Finance Office: ..1-888-822-UTSI (8874)-37297
Student Services..1-888-822-UTSI (8874)-37228

APPLICATION FOR ADMISSION

No student will be allowed to register unless a completed Application to the Graduate School of the University of Tennessee, Knoxville (UTK) is on file in the Registrar's Office. An Application for Admission to the UTK Graduate School must be completed online at https://www.applyweb.com/utg and accompanied by a $60.00 non-refundable application fee made payable to The University of Tennessee Space Institute. All applicants are required to
provide one official transcript of all undergraduate and graduate records, GRE test scores and three letters of recommendation when applying. International applicants will also need to include TOEFL scores. GRE scores are a requirement of all departments at UTSI except the Master of Science degree in Industrial Engineering/Engineering Management concentration. Please select UT Space Institute if you plan to attend the Tullahoma campus location. All applications need to be submitted online to the office of Graduate Admissions Knoxville, TN.

Graduate Research Assistantship applications need to be submitted to Clara Ferguson, Office of Admissions and Recruiting, University of Tennessee Space Institute, MS-6, Tullahoma, TN 37388-9700. Assistantship applications must include GRE test scores and three letters of recommendation. All International applicants will need to provide TOEFL test scores in addition to GRE’s. Official transcripts and test scores should be sent to College Code 1843, Graduate Admissions Office, 201 Student Services Building, Knoxville, TN 37996-0221. Once admitted, a full admission will not be granted until all official test scores and degree confirmation are received in the Graduate Admissions Office in Knoxville. Please contact Clara Ferguson at (931) 393-7234 or 888-822-8874 ext. 37234 if you have questions.

TOTAL WITHDRAWAL FROM THE UNIVERSITY

If, after registering for classes and either returning your fee payment or your Confirmation of Attendance form to the Bursar’s Office, you decide not to enroll for this term, you must immediately notify Charlene Hane, Student Services, at UTSI. If you withdraw officially on or before a Change of Registration deadline, but after the no “W” deadline for a particular session, the grade of “W” will be issued.

GRADES

Students may obtain their grades through the web at MyUTK or contact Charlene Hane, Student Services, Office D-100, (931) 393-7228.

GRADUATE STUDENTS CHANGE OF REGISTRATION AFTER THE DEADLINE

To change registration in any way after the deadline, a graduate student must present a request, signed by the instructor(s) and adviser as evidence of their knowledge of the request to Charlene Hane, Student Services at UTSI. Graduate students must verify that ALL changes have been approved by their academic adviser. If the Office of Graduate Student Services approves the change of registration, the change will be noted on the student’s permanent record. THE DROP DEADLINE FOR GRADES AND THE DROP DEADLINE FOR FEE REFUNDS ARE NOT THE SAME.

FULL-TIME STUDENTS

Students enrolled in at least 9 semester hours during the Fall/Spring/Summer semesters are considered full-time. Full-time enrollment for two consecutive semesters is required to full fill the admission to candidacy doctoral degree residency requirement. Graduate Research Assistants (GRAs) must be enrolled for 9 hours during the Fall/Spring semesters and 6 hours during the Summer. GRAs must also enroll in one of the MABE 595 seminars or a PHYS 599 seminar each semester in which seminars are offered, unless a waiver is granted by the Associate Executive Director.
REMOVAL OF INCOMPLETE GRADES

All Incomplete Grades (I) must be removed prior to graduation. The instructor, in consultation with the student, decides the terms for the removal of the I, including the time limit for removal. If the I is not removed within one calendar year, the grade will be changed to an F. The course will not be counted in the cumulative grade point average until a final grade is assigned. No student may graduate with an I on the record. Students planning to graduate Spring Semester 2018 must remove all INCOMPLETE GRADES by April 27, 2018. Contact Charlene Hane, Student Services, to remove an Incomplete Grade.

REPEATING A COURSE

No graduate student may repeat a course for the purpose of raising a grade already received, with the exception of a NC course. A graduate student cannot do additional work nor repeat an examination to raise a final grade.

ADMISSION TO CANDIDACY

MASTER OF SCIENCE DEGREE:

Each M.S. student, including IE Capstone Project students, is responsible for submitting a completed and signed Admission to Candidacy Application at least one semester prior to receiving the degree.

Candidacy committee changes or course changes must be submitted to the committee chairman using a Revision form. If changing from a thesis option to a non-thesis option or vice versa, a new Admission to Candidacy Application must be submitted. All forms must be processed through Student Services.

DOCTORAL DEGREE:

A Doctoral Committee should be formed during the student's first year of doctoral study. Any changes to the doctoral committee (deletions or additions) must be submitted to the Committee Chairman using a Revision form for approval. Each doctoral student is responsible for submitting a completed Admission to Candidacy form signed by the doctoral committee at least one semester prior to receiving the degree. All forms must be processed through Student Services.

CONTINUOUS ENROLLMENT

All degree-seeking graduate students are expected to make a full commitment to their graduate and professional study in order to ensure that they can complete all degree requirements without unnecessary delay. Graduate students are therefore required to maintain an active status through continuous enrollment from the time of first enrollment until graduation.

Continuous enrollment is maintained by registering for a minimum of one graduate credit hour per semester (excluding the summer, unless stipulated otherwise by the program or department). However, students who have started taking dissertation hours (course 600) must maintain a minimum of three credit hours per semester during all semesters, including the summer, as stipulated in the policy on "Registration for Course 600 (Doctoral Research and Dissertation)" in order to comply with the Continuous Enrollment requirement (see under Doctoral Programs for details).
The minimum enrollment for international students may be different, and international students always need to check with the Center for International Education (CIE) in order to determine what minimum enrollment they need to maintain in order to satisfy all enrollment requirements attached to their specific visa.

CONSEQUENCES OF NON-ENROLLMENT WITHOUT LEAVE OF ABSENCE

Graduate students who do not maintain continuous enrollment as stipulated in the "Continuous Enrollment" policy will lose their active student status. A student who has lost his or her active status without having been granted a Leave of Absence for the period of non-enrollment ahead of time will not be allowed to continue in his her graduate program until readmitted. (see policy on "Readmission" in the Graduate Catalog for more details).

Non-enrollment other than during an approved Leave of Absence (LOA) does not alter or affect any of the milestone deadlines, such as admission to candidacy, time to degree, etc.

Upon approval for readmission to complete the interrupted degree program, students will be retroactively enrolled in every semester of missed enrollment for one graduate credit hour of Course 502 or for three graduate credit hours of Course 600 (whichever is appropriate). Students will be responsible for paying the past tuition charges and fees as well as the current university per semester late registration penalty. All past due charges will need to be paid before the Graduate School will approve the student for any future enrollment.

FINAL EXAM FOR NON-THESIS, CAPSTONE PROJECT STUDENTS, THESIS AND DISSERTATION STUDENTS

A candidate presenting a thesis or dissertation must pass a final oral examination on all work offered for the degree. The examination is scheduled through Student Services. Failure to notify Student Services of the examination date will put the student at risk for graduating that semester. Final examinations not properly scheduled MUST be repeated. The final draft of the thesis must be distributed to the committee members at least two weeks prior to the date of the final examination. In case of a grade of "Fail", the candidate may not apply for re-examination until the following semester. The result of the second examination is final.

UT POLICY ON INSURANCE FOR INTERNATIONAL STUDENTS

All foreign national students registered with the University of Tennessee, Knoxville, are required to have comprehensive medical insurance. The policy for the 2017-2018 academic year is provided by United HealthCare Student Resources. The premium must be paid before registration. Contact the Student Services Office (room D-100 ext. 37228) for further information.

GENERAL SEMINAR

A number of seminars of interest to all UTSI students and general public will be offered throughout the semester.

FINAL EXAM DATES

Study Day – April 30, 2018
Final Exams – May 1, 2, & 3, 2018
FINANCIAL CALENDAR, FEES, REFUNDS, AND TUITION

Please click http://onestop.utk.edu/tuition-fees/ link to the most current information. You may also contact Jennifer Boyles in the Business and Finance Office at jboyles@utsi.edu or phone number 931-393-7297.

The UTSI Budget and Finance Accounts Receivable Office will no longer accept payment for tuition and fees by credit card. All students will need to login to MyUTK One Stop to make secure payments online. Priority registration payment deadline is January 8, 2018 by 4:30 p.m. Eastern Time.

Please see One Stop - Paying Tuition and Fees webpage for more details http://onestop.utk.edu/pay/.

Credit or Debit Cards

There is a 2.75% service fee for these payments. UT has a contract with an outside vendor to provide this service. The vendor retains the fee in full.

HONOR STATEMENT

The following Honor Statement is signed by all students applying to The Graduate School:

"An essential feature of The University of Tennessee, Knoxville is a commitment to maintaining an atmosphere of intellectual integrity and academic honesty. As a student of the University, I pledge that I will neither knowingly give nor receive any inappropriate assistance in academic work, thus affirming my own personal commitment to honor and integrity."

For official information on all UTK Graduate School policies, refer to the current UTK Graduate Catalog available at http://catalog.utk.edu. The student handbook “Hilltopics” is available online at http://hilltopics.utk.edu/index.html

The University of Tennessee Space Institute reserves the right to cancel any class with an insufficient number of students, or for other reasons.

THE UNIVERSITY OF TENNESSEE POLICY ON A DRUG-FREE CAMPUS AND WORKPLACE

In support of the Drug-Free Workplace Act of 1988 (Public Law 100-690) and the Drug-Free Schools and communities Act of 1989, the University of Tennessee is notifying all students, faculty, and staff of the following university policy approved by the UT Board of Trustees on 21 June 1990.

It is the policy of the University of Tennessee to maintain a safe and healthful environment for its students and employees. Therefore, university policy prohibits the unlawful use, manufacture, possession, distribution, or dispensing of drugs ("controlled substances" as defined in the Controlled Substances Act, 21 U.S.C. 812) and alcohol on university property or during university activities.

Violation of this policy is grounds for disciplinary action—up to and including immediate discharge for an employee and permanent dismissal of a student. Federal and state laws provide additional penalties for such unlawful activities, including fines and imprisonment (21 U.S.C. 841
et seq.; T.C.A. 39-6-401 et seq.). Local ordinances also provide various penalties for drug- and alcohol-related offenses. The university is bound to take all appropriate actions against violators, which may include referral for legal prosecution or requiring the individual to participate satisfactorily in an approved drug use or alcohol abuse assistance or rehabilitation program.
THE UNIVERSITY RESERVES THE RIGHT TO REVISE
ANY INFORMATION LISTED IN THIS TIMETABLE OF CLASSES

The University of Tennessee Space Institute
Spring 2018 Course Listings

AEROSPACE ENGINEERING

AE 500 Master’s Thesis (1-15)
SEC. 009 CRN 24099 Abedi
011 CRN 24100 Balas
012 CRN 24101 Brooks
013 CRN 24102 Moeller
014 CRN 24103 Schmisseur
015 CRN 24104 Solies
016 CRN 24105 Vakili
021 CRN 24110 Zhang

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

AE 502 Registration for Use of Facilities (1-15)
SEC. 002 CRN 24112 Moeller

Required for the student not otherwise registered during any semester when student uses university facilities and/or faculty time before degree is completed.
Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated.
Credit Restriction: May not be used toward degree requirements.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate

AE 512 Viscous Flow (3)
SEC. 001 CRN 24113
TEXT: Viscous Flow; Frank M. White; 3rd Edition
TIME: Monday & Wednesday 2:40 – 3:55 E-110
PROF: Dr. Ahmad Vakili

Derivation of fundamental equations of compressible viscous flow; boundary conditions for viscous heat-conducting flow; exact solutions for Newtonian viscous flow (Navier-Stokes) equations for special cases; similarity solutions. Thermal boundary layers, stability of laminar flows, transition to turbulence, 2-D turbulent boundary layer equations. Incompressible-turbulent mean flow, and compressible boundary layer flow.
Registration Permission: Consent of instructor.

AE 566 Electric Propulsion (3)
SEC. 001 CRN 29031
Engineering concepts of electric propulsion and its application to modern satellites and deep space probes. Topics include physical principles, practical designs, and performance levels of electrically-powered space propulsion thrusters including: ion engines; pulsed and steady-state (fixed field) plasma and MHD thrusters, including Hall Thrusters, and others.

Recommended Background: Rocket propulsion.

Registration Permission: Consent of Instructor.

AE 590 Selected Engineering Problems (2-6)

<table>
<thead>
<tr>
<th>SEC.</th>
<th>CRN</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>24118</td>
<td>Abedi</td>
</tr>
<tr>
<td>003</td>
<td>24119</td>
<td>Brooks</td>
</tr>
<tr>
<td>004</td>
<td>25544</td>
<td>Moeller</td>
</tr>
<tr>
<td>005</td>
<td>25545</td>
<td>Schmisseur</td>
</tr>
<tr>
<td>006</td>
<td>25546</td>
<td>Solies</td>
</tr>
<tr>
<td>007</td>
<td>25547</td>
<td>Vakili</td>
</tr>
<tr>
<td>008</td>
<td>25548</td>
<td>Zhang</td>
</tr>
</tbody>
</table>

Repeatability: May be repeated. Maximum 6 hours.

Comment(s): Enrollment limited to students in problems option.

Registration Permission: Consent of advisor.

AE 595 Aerospace Engineering Seminar (1)

<table>
<thead>
<tr>
<th>SEC.</th>
<th>CRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>24120</td>
</tr>
</tbody>
</table>

TEXT: None

TIME: Will be announced through email

PROF: Dr. Trevor Moeller

All phases of aerospace engineering, reports on current research at the University of Tennessee, Knoxville, and UT Martin.

Grading Restriction: Satisfactory/No Credit grading only.

Repeatability: May be repeated. Maximum 20 hours.

AE 599 Special Topics: Atmospheric Sciences for Aerospace & Mechanical Engineers (3)

<table>
<thead>
<tr>
<th>SEC.</th>
<th>CRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>24122</td>
</tr>
</tbody>
</table>

TIME: Tuesday & Friday 1:00 – 2:15

PROF: Dr. Steve Brooks

Structure of the atmosphere, energy balance, turbulent boundary layer, solar forcing, satellite drag, aeromechanics and de-orbits, and hypersonic flight in the upper atmosphere. These will be extended to the Venusian, Martian and Jovian atmospheres.

Repeatability: May be repeated. Maximum 6 hours.

AE 599 Special Topics: Aircraft Flight Controls (Same as AVSY 516 001 CRN 24193) (3)

<table>
<thead>
<tr>
<th>SEC.</th>
<th>CRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>005</td>
<td>25410</td>
</tr>
</tbody>
</table>
Static and dynamic longitudinal, directional, and lateral stability of aerospace vehicles will be investigated. Topics include contribution of vehicle components to stability and control, motion with fixed and free control surfaces, steady flight and maneuvering flight, flight test techniques, and introduction to control theory and design of automatic controls.

Repeatability: May be repeated. Maximum 6 hours.

AE 599 Special Topics: Computational Fluid Dynamics I (3)
SEC. 011 CRN 28071 (Same as ME 599 005 CRN 27030)
TIME: Monday & Wednesday 4:10 – 5:25 E-110
PROF: Dr. Greg Power

This course uses a commercial CFD code that is widely accepted and used in industries and government labs as a hands-on introduction to computational fluid dynamics. After a brief review of the fundamentals, the course will cover various aspects of the simulation process including geometry modeling, grid generation, solution strategy and post processing primarily through practical examples that bring out the importance of proper understanding of the underlying physics for the problem. Examples will also attempt to cover a wide range of problems that cover different types of flow conditions (incompressible/compressible, laminar/turbulent, steady/unsteady flows, free surface flows, flows with heat transfer and possibly reacting flows).

Repeatability: May be repeated. Maximum 6 hours

AE 599 Special Topics: Experimental Flight Mechanics: Fixed Wing Performance (3)
SEC. 014 CRN 29174 (Same as AVSY 521 001 CRN 24194)
TIME: Tuesday & Friday 10:30 – 11:45 Airport Classroom
PROF: Dr. Peter Solies

Fundamental theories, flight test techniques, and data collection and analyses for fixed wing aircraft performance. Topics: air data system calibration, takeoff and landing performance, turn performance, cruise performance, energy concepts, and aerodynamic modeling. Weekly classroom academics with approximately 4-6 flight labs.

(RE) Prerequisite(s): 503 or Aerospace Engineering 515.

Repeatability: May be repeated. Maximum 6 hours

AE 600 Doctoral Research/Dissertation (3-15)
SEC. 018 CRN 25300 Abedi
007 CRN 24130 Balas
008 CRN 24131 Brooks
009 CRN 24132 Moeller
010 CRN 24133 Schmisseur
013 CRN 24136 Solies
015 CRN 25550 Vakili
017 CRN 24138 Zhang
Grading Restriction: P/NP only.
Repeatability: May be repeated.
Registration Restriction(s): Minimum student level – graduate.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Section</th>
<th>CRN</th>
<th>Text</th>
<th>Time</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 601</td>
<td>Doctoral Research Methodology (3)</td>
<td>002</td>
<td>29040</td>
<td>TBD</td>
<td>TBD</td>
<td>Dr. Kivanc Ekici</td>
</tr>
</tbody>
</table>

Methods of planning and conducting original research and proposal writing.
Registration Restriction(s): Minimum student level – graduate / doctoral students.
Registration Permission: Departmental approval.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Section</th>
<th>CRN</th>
<th>Text</th>
<th>Time</th>
<th>Professor</th>
</tr>
</thead>
</table>

This course is intended to serve as a sequel to an introductory finite element or computational mechanics courses. It is designed to deepen student’s understanding of the characteristics of elliptic, parabolic, and hyperbolic partial differential equations (PDE) and get familiar with solution techniques for dynamic problems.
Repeatability: May be repeated. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Section</th>
<th>CRN</th>
<th>Text</th>
<th>Time</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 690</td>
<td>Advanced Topics: Discontinuous Galerkin Finite Element Methods (3)</td>
<td>004</td>
<td>27189</td>
<td>None</td>
<td>Monday & Wednesday 11:40 – 12:55 E-110</td>
<td>Dr. Reza Abedi</td>
</tr>
</tbody>
</table>

This course is intended to serve as a sequel to an introductory finite element method (FEM) course where conventional (continuous) FEM method is covered. The main difference of Discontinuous Galerkin (DG) methods to continuous FEMs the weak enforcement of jump conditions on the boundary of the elements.
DG methods generally are more stable and perform better for dynamic problems involving shocks and other discontinuities. In this course we cover:

1. Rankine-Hugoniot jump conditions for conservation laws; Exact and some approximate Riemann solution schemes.
2. Differential forms (exterior calculus) to objectively express and combine space and time quantities.
3. Finite element formulation for DG methods.
4. Computational geometry aspects of DG methods (mesh smoothing, h-, p-, and hp-adaptive operations, moving boundaries, etc.).
5. Object-oriented design and implementation of DG (and FEM) methods

Repeatability: May be repeated. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

AE 690 Advanced Topics: Fundamentals of Modern Hypersonics (3)
SEC. 006 CRN 31875

TIME: Tuesday & Thursday 2:40 – 3:55 E-110
PROF: Dr. John Schmisseur and Dr. Ryan Bond

Fundamentals of Modern Hypersonics will provide an introduction to the fundamental concepts of hypersonic aerothermodynamics appropriate for advanced graduate students. The course will be presented in three sections comprised of a review of inviscid and approximation methods for hypersonic aerodynamics, viscous aerothermodynamics and interactions, and an introduction to high-temperature gas dynamics.

Repeatability: May be repeated. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

AVIATION SYSTEMS

AVSY 500 Master’s Thesis (1-15)
SEC. 001 CRN 24182 Brooks
003 CRN 24183 Solies

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

AVSY 502 Registration for Use of Facilities (1-15)
SEC. 001 CRN 24186 Brooks
003 CRN 24187 Solies

Required for the student not otherwise registered during any semester when student uses university facilities and/or faculty time before degree is completed.

Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated.
Credit Restriction: May not be used toward degree requirements.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.
Human factors pertinent to aviation: concept of human factors, human error, fatigue, body rhythms, performances, motivation, vision and visual illusions, communication, attitudes, training and devices, displays and controls, space and layout, anthropometry, flight deck design and evaluation, aircraft cabin design and evaluation, flying qualities evaluation, and performance measurement techniques. Applied aviation systems.

Repeatability: May be repeated. Maximum 9 hours.

Registration Restriction(s): Minimum student level – graduate.

Registration Permission: Consent of instructor.

Static and dynamic longitudinal, directional, and lateral stability of aerospace vehicles will be investigated. Topics include contribution of vehicle components to stability and control, motion with fixed and free control surfaces, steady flight and maneuvering flight, flight test techniques, and introduction to control theory and design of automatic controls.

Fundamental theories, flight test techniques, and data collection and analyses for fixed wing aircraft performance. Topics: air data system calibration, takeoff and landing performance, turn performance, cruise performance, energy concepts, and aerodynamic modeling. Weekly classroom academics with approximately 4-6 flight labs.

(RE) Prerequisite(s): 503 or Aerospace Engineering 515.

Non-thesis aviation systems majors only.

Credit Level Restriction: Graduate credit only.

Registration Restriction(s): Minimum student level - graduate.
BIOMEDICAL ENGINEERING

BME 500 Master’s Thesis (1-15)
SEC. 012 CRN 26102 Johnson

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

BME 529 Applications of Linear Algebra in Engineering Systems (3)
SEC. 001 CRN 24222 (Video Recorded)
TIME: Tuesday & Friday 9:30 – 10:45 E-111
PROF: Dr. Monty Smith

Fundamental concepts of linear algebra to problems in engineering systems: steady state and dynamic systems. Geometric and physical interpretations of relevant concepts: least square problems, LU, QR, and SVD decompositions of system matrix, eigenvalue problems, and similarity transformations in solving difference and differential equations; numerical stability aspects of various algorithms; application of linear algebra concepts in control and optimization studies; introduction to linear programming. Computer projects.
Cross-listed: (Same as Chemical and Biomolecular Engineering 529; Civil Engineering 529, Electrical and Computer Engineering 529; Environmental Engineering 529; Industrial Engineering 529; Materials Science and Engineering 529; Mechanical Engineering 529; Nuclear Engineering 529).
Comment(s): Graduate standing or consent of instructor required.

BME 590 Selected Biomedical Engineering Problems (2-6)
SEC. 001 CRN 27068 Johnson

Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated. Maximum 6 hours.
Comment(s): Enrollment is limited to students in the non-thesis option.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

BME 595 Biomedical Seminar (1)
SEC. 002 CRN 26253
TEXT: None
TIME: Will be announced through email
PROF: Dr. Jacqueline Johnson

All phases of biomedical engineering, reports on current research at UTK and UTSI.
Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated. Maximum 20 hours.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate

BME 600 Doctoral Research/Dissertation (3-15)
SEC. 011 CRN 26103 Johnson

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Registration Restriction(s): Minimum student level – graduate.

BME 601 Doctoral Research Methodology (3)
SEC. 002 CRN 29041
TEXT: TBD
TIME: TBD
PROF: Dr. Jeffery Reinbolt

Intensive, individualized experience in reviewing literature, evaluating experimental or theoretical methods, planning a research project, and presenting research project plans orally and in writing.
Registration Restriction(s): Minimum student level – graduate. PhD students only.
Registration Permission: Consent of instructor.

BME 610 Advanced Topics: Biofunctionalization of Nanomaterials
SEC. 005 CRN 26966
TEXT: Biofunctionalization of Nanomaterials; Edited by Challa Kumar
TIME: Tuesday & Thursday 10:10 – 11:25 E-110
PROF: Dr. Jackie Johnson

This course is the integration of nanomaterials and medicine and the exploration of potential future research projects in biomedical engineering.
The course will progress from predominantly instruction to discussion on a potential proposal to be summarized in a 4-page white paper, a cover sheet, mock budget and biosketch – the students can either work as a group or individually.
There will be no final exam.
Current research topics of interest in biomedical engineering.
Repeatability: May be repeated. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

ENGINEERING MANAGEMENT

EM 500 Master’s Thesis (1-15)
SEC. 001 CRN 27679 Simonton
002 CRN 28913 Yu

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.
EM 501 Capstone Project (3-6)
SEC. 001 CRN 22043 Tolk

Application-oriented project to show competence in major academic area.

Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated. Maximum 6 hours.
Comment(s): Requires enrollment in engineering management.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

EM 502 Registration for Use of Facilities (1-15)
SEC. 001 CRN 22044 Simonton
002 CRN 29703 Yu

Required for the student not otherwise registered during any semester when student uses university
devices and/or faculty time before degree is completed.
Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated.
Credit Restriction: May not be used toward degree requirements.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

EM 533 Theory and Practice of Engineering Management (3)
SEC. 001 CRN 22045 UTSI students participating at Tullahoma
002 CRN 22046 UTSI students participating elsewhere
003 CRN 22047 UTK students participating elsewhere

TEXT: Required: Developing Effective Engineering Leadership, Ray Morisson and Carl Ericsson,
0385517254
Required: Organizational Behavior: An Evidenced Based Approach, 13th edition, Fred, Brett & Kyle
TIME: Monday 4:00 – 6:35 E-113
PROF: Dr. Joe Costa

Principles of engineering management, including: business and organization design, culture, leadership,
marketing and competition in global economy, motivation and performance management, empowerment,
organizational behavior, and diversity. Systems thinking, learning organizations, and systems dynamics
modeling. Principle application to work settings and case studies.

EM 534 Financial Management for Engineering Managers (3)
SEC. 001 CRN 22049 UTSI students participating at Tullahoma
002 CRN 22050 UTSI students participating elsewhere
003 CRN 22051 UTK students participating elsewhere

TIME: Monday 4:00 – 6:35 E-111
PROF: Dr. Andrew Yu
Financial and managerial accounting in engineering and technology management. Transaction recording, financial statements, ratios and analysis, activity-based accounting, and standard practices for costing, budgeting, assessment, and control.

EM 538 New Venture Formation (3)
SEC. 001 CRN 27688 UTSI students participating at Tullahoma
002 CRN 27689 UTSI students participating elsewhere
003 CRN 27690 UTK students participating elsewhere
TIME: Thursday 4:00 – 6:35 E-113
PROF: Dr. Sandra Affare

Factors other than mechanical or chemical which enter into successful establishment of manufacturing or service enterprise. Organizational and financial planning and evaluation. Cost and location studies and market analysis to determine commercial feasibility of new ventures.

Recommended Background: Graduate standing in Engineering or Business.

EM 541 Managing Change and Improvement in Technical Organizations (3)
SEC. 001 CRN 22053 (Pre-recorded)
TIME: TBD
PROF: Dr. Janice Tolk

Recommended Background: Graduate standing in Engineering or Business.

EM 600 Doctoral Research/Dissertation (3-15)
SEC. 001 CRN 25267 Simonton
003 CRN 28923 Yu

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Registration Restriction(s): Minimum student level – graduate.

INDUSTRIAL ENGINEERING

IE 516 Statistical Methods in Industrial Engineering (3)
SEC. 002 CRN 31908 (Record Only)
Application of classical statistical techniques to industrial engineering problems. Statistics and statistical thinking in managerial context of organizational improvement; descriptive statistics and distribution theory; relationship between statistical process control techniques and classical statistical tools; parameter estimation and hypothesis testing; goodness-of-fit testing; linear regression and correlation; analysis of variance; single and multiple factor experimental design.

Recommended Background: Statistics 251 or equivalent.

IE 529 Applications of Linear Algebra in Engineering Systems (3)
SEC. 001 CRN 21767 (Video Recorded)
TIME: Tuesday & Friday 9:30 – 10:45 E-111
PROF: Dr. Monty Smith

Fundamental concepts of linear algebra to problems in engineering systems: steady state and dynamic systems. Geometric and physical interpretations of relevant concepts: least square problems, LU, QR, and SVD decompositions of system matrix, eigenvalue problems, and similarity transformations in solving difference and differential equations; numerical stability aspects of various algorithms; application of linear algebra concepts in control and optimization studies; introduction to linear programming. Computer projects.

Comment(s): Graduate standing or consent of instructor required.

MATHEMATICS

MATH 535 Partial Differential Equations I (3)
SEC. 001 CRN 32081
TEXT: TBD
TIME: Monday & Wednesday 1:00 – 2:15 E-111
PROF: K. C. Reddy

First order partial differential equations, classification of second order partial differential equations, properties of elliptic, parabolic and hyperbolic partial differential equations. Recommended Background: One year of advanced calculus.

MECHANICAL ENGINEERING

ME 500 Master’s Thesis (1-15)
SEC. 001 CRN 21641 Abedi
Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

ME 502 Registration for Use of Facilities (1-15)
SEC. 002 CRN 25322 Moeller

Required for the student not otherwise registered during any semester when student uses university facilities and/or faculty time before degree is completed.
Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated.
Credit Restriction: May not be used toward degree requirements.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

ME 512 Convection Heat Transfer (3)
SEC. 001 CRN 21677
TEXT: Adrian Bejan; Convection Heat Transfer; 4th Edition; John Wiley
TIME: Tuesday & Thursday 1:10 – 2:25 E-110
PROF: Dr. Feng Yuan Zhang

Models and equations for fluid motion, the general energy equation, and transport properties. Exact, approximate, and boundary layer solutions for laminar flow heat transfer problems. Heat transfer in internal and external forced and buoyancy driven flows. Application of similarity concepts and analogies to convection heat transfer.
Recommended Background: Undergraduate heat transfer course.

ME 529 Applications of Linear Algebra in Engineering Systems (3)
SEC. 001 CRN 21681 (Video Recorded)
TIME: Tuesday & Friday 9:30 – 10:45 E-111
PROF: Dr. Monty Smith

Fundamental concepts of linear algebra to problems in engineering systems: steady state and dynamic systems. Geometric and physical interpretations of relevant concepts: least square problems, LU, QR, and SVD decompositions of system matrix, eigenvalue problems, and similarity transformations in solving difference and differential equations; numerical stability aspects of various algorithms; application of linear algebra concepts in control and optimization studies; introduction to linear programming. Computer projects.

Comment(s): Graduate standing or consent of instructor required.

ME 570 Numerical Methods for Engineers (3)
SEC. 001 CRN 29216
TEXT: TBD
TIME: Monday & Wednesday 1:00 – 2:25 E-110
PROF: Dr. Kivanc Ekici

Review and implementation of basic numerical techniques. Explicit and implicit solution techniques of ordinary differential equations and partial differential equations. Applications include heat transfer and fluid mechanics.

Recommended Background: Numerical analysis, fluid mechanics, heat transfer and differential equations.

Registration Permission: Consent of Instructor.

ME 590 Selected Engineering Problems (2-6)
SEC. 002 CRN 21687 Abedi
003 CRN 25786 Brooks
005 CRN 25787 Moeller
006 CRN 25788 Schmisseur
007 CRN 25789 Solies
008 CRN 25790 Vakili
009 CRN 25791 Zhang

Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated. Maximum 6 hours.
Comment(s): Enrollment limited to students in problems option.
Registration Permission: Consent of advisor.

ME 595 Mechanical Engineering Seminar (1)
SEC. 001 CRN 21688
TEXT: None
TIME: Will be announced through email
PROF: Dr. Trevor Moeller

All phases of mechanical engineering, reports on current research at the University of Tennessee, Knoxville, and the University of Tennessee Space Institute.
Grading Restriction: Satisfactory/No Credit grading only.
Repeatability: May be repeated. Maximum 20 hours.

ME 599 Special Topics in ME: Atmospheric Sciences for AE and ME Engineers (3)
SEC. 002 CRN 26969 (Same as AE 599 001 CRN 24122)
Structure of the atmosphere, energy balance, turbulent boundary layer, solar forcing, satellite drag, aero-
maneuvers and de-orbits, and hypersonic flight in the upper atmosphere. These will be extended to the
Venusian, Martian and Jovian atmospheres.

Repeatability: May be repeated. Maximum 6 hours

Registration Permission: Consent of instructor.

This course uses a commercial CFD code that is widely accepted and used in industries and government
labs as a hands-on introduction to computational fluid dynamics. After a brief review of the fundamentals,
the course will cover various aspects of the simulation process including geometry modeling, grid
generation, solution strategy and post processing primarily through practical examples that bring out the
importance of proper understanding of the underlying physics for the problem. Examples will also
attempt to cover a wide range of problems that cover different types of flow conditions
(incompressible/compressible, laminar/turbulent, steady/unsteady flows, free surface flows, flows with
heat transfer and possibly reacting flows).

Repeatability: May be repeated. Maximum 6 hours

Registration Permission: Consent of instructor.

Grading Restriction: P/NP only.

Repeatability: May be repeated.

Registration Restriction(s): Minimum student level – graduate.
Methods of planning and conducting original research and proposal writing.

Registration Restriction(s): Minimum student level – doctoral student.

Registration Permission: Departmental approval.

ME 610 Advanced Topics: Computer Methods in Dynamics Continua (3)

SEC. 009 CRN 31905

TEXT: Course notes are sufficient, but below is a list of relevant books:

TIME: Monday & Wednesday 10:10 – 11:25 E-110

PROF: Reza Abedi

Full description can be found at:

This course is intended to serve as a sequel to an introductory finite element or computational mechanics courses. It is designed to deepen student’s understanding of the characteristics of elliptic, parabolic, and hyperbolic partial differential equations (PDE) and get familiar with solution techniques for dynamic problems.

Advanced theory and applications in the thermal/fluid sciences.

Repeatability: May be repeated. Maximum 9 hours.

Registration Restriction(s): Minimum student level – graduate.

Registration Permission: Consent of instructor.

ME 610 Advanced Topics: Discontinuous Galerkin Finite Element Methods (3)

SEC. 010 CRN 31906

TEXT: None

TIME: Monday & Wednesday 11:40 – 12:55 E-110

PROF: Dr. Reza Abedi

This course is intended to serve as a sequel to an introductory finite element method (FEM) course where conventional (continuous) FEM method is covered. The main difference of Discontinuous Galerkin (DG) methods to continuous FEMs the weak enforcement of jump conditions on the boundary of the elements. DG methods generally are more stable and perform better for dynamic problems involving shocks and other discontinuities. In this course we cover:

1. Rankine-Hugoniot jump conditions for conservation laws; Exact and some approximate Riemann solution schemes.
2. Differential forms (exterior calculus) to objectively express and combine space and time quantities.
3. Finite element formulation for DG methods.
4. Computational geometry aspects of DG methods (mesh smoothing, h-, p-, and hp-adaptive operations, moving boundaries, etc.).
5. Object-oriented design and implementation of DG (and FEM) methods
Advanced theory and applications in the thermal/fluid sciences.
Repeatability: May be repeated. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.
Registration Permission: Consent of instructor.

PHYSICS

Phys 500 Master’s Thesis (1-15)
SEC. 002 CRN 23588 Davis
003 CRN 23589 Parigger

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Credit Level Restriction: Graduate credit only.
Registration Restriction(s): Minimum student level – graduate.

Phys 599 Seminars (1)
SEC. 010 CRN 29032

TEXT: None

TIME: 2nd & 4th Thursday 3:30 – 5:00 H-111

PROF: Dr. Christian Parigger

(a) Mechanics; (b) Radiation; (c) Heat and Thermodynamics; (d) Electricity and Magnetism; (e) Modern Physics.
Repeatability: May be repeated with consent of department. Maximum 18 hours.

Phys 600 Doctoral Research/Dissertation (3-15)
SEC. 002 CRN 23615 Davis
003 CRN 23616 Parigger

Grading Restriction: P/NP only.
Repeatability: May be repeated.
Registration Restriction(s): Minimum student level – graduate.

Phys 602 Atomic Physics (3)
SEC. 001 CRN 31907

TEXT: Theoretical Atomic Physics (primary course book reference for spring 2015) and a variety of selected sections from other books (such as F. Schwabl Advanced Quantum mechanics) and current research literature; H.S. Friedrich; Springer Verlag; Corr. 2nd printing edition (March 1, 2004); ISBN 10:3540641246; ISBN 13:978-3540641247

TIME: Thursday 1:00 – 3:35 E-111

PROF: Dr. Christian Parigger

Advanced problems.
Comment(s): For students specializing in the field.
Registration Restriction(s): Minimum student level – graduate.

Phys 642 Adv. Top: Nanophotonics and Nano-Optics (3)
SEC. 003 CRN 27179

*TEXT: https://www.amazon.com/Principles-Nano-Optics-Lukas-Novotny-ebook/dp/B00INYGCQG/ref=mt_kindle?_encoding=UTF8&me=
Principles of Nano-Optics 2nd Edition, by Lukas Novotny (Author), Bert Hecht (Author)

TIME: Tuesday & Thursday 1:10 – 2:25 Zoom
PROF: Dr. Lloyd Davis

Optical phenomena on the nanometer scale, in nanoscience, and in nanotechnology; sub-diffraction microscopy, near-field probes, plasmonics/surface plasmons, forces in confined fields.

Advanced theoretical or experimental topics not covered in other courses.
Repeatability: May be repeated with consent of department. Maximum 9 hours.
Registration Restriction(s): Minimum student level – graduate.